Human and Agent Cooperative Learning

Matt Taylor

University of Alberta: Intelligent Robot Learning Lab (irll.ca) Fellow-in-Residence: Alberta Machine Intelligence Institute (Amii.ca) Al Redefined: Research Director (Al-R.com)

Canada CIFAR AI Chair, Amii

RL Applications

Developing vs. PoC vs. MVP

American Options Exercise Policy

Data Center Cooling

AlphaGO

Stock Trading

Balloon Control

Tokamak Fusion

Water Treatment

How do we deploy more RL solutions?

- Better understand how to identify, de-risk, and tackle real world problems
 Challenges of Real-World Reinforcement Learning
- > Understand how and when to "cheat" by using external information
 - Existing agents/data
 - Human knowledge

$\mathsf{Agent} \to \mathsf{Agent}$

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

 $\mathsf{Agent} \to \mathsf{Agent}$

Human \rightarrow Agent

- Offline / Batch RL
- Demonstrations
- Curriculum Learning / Meta RL
- Advice

- Agent \rightarrow Agent Human \rightarrow Agent Agent \rightarrow Human
- Intelligent Tutoring Systems

Agent \rightarrow Agent Bootstrapping

Prior agent is optimal OK

How much data do I need? How good is my policy? (OPE) How sure am I about the policy's performance? (HCOPE)

"Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems." Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020.

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

Agent \rightarrow Agent Transfer

What to transfer? (From whom to transfer?) How to transfer? When to transfer?

"Transfer Learning for Reinforcement Learning Domains: A Survey." Taylor, and Peter Stone. 2009.

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

Agent — Agent Transfer

"Mitigating an Adoption Barrier of Reinforcement Learning-based Control Strategies in Buildings." Aakash Krishna G.S., Tianyu Zhang, Omid Ardakanian, Taylor. Energy & Buildings, 2023

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

Agent — Agent Online Learning

Curriculum Learning Meta RL

move to the yellow room

move the bag to the yellow room

move the chair to the blue room

"Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey." Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Taylor, and Peter Stone. 2020.

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

Muslimani, Lewandowski, Luo, Schuurmans

Agent \rightarrow Agent Advice

On-demand advice

Who initiates? When do they provide? Is there a cost? Are there multiple teachers?

"A Conceptual Framework for Externally-Influenced Agents: An Assisted Reinforcement Learning Review." Adam Bignold, Francisco Cruz, Taylor, Tim Brys, Richard Dazeley, Peter Vamplew, and Cameron Foale. 2021

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

Agent → Agent Advice

"Integrating Reinforcement Learning with Human Demonstrations of Varying Ability." Taylor, Halit Bener Suay, and Sonia Chernova. AAMAS-11.

- Offline / Batch RL
- Transfer Learning
- Curriculum Learning / Meta RL
- Advice

→No advice
Early Advising
Importance Advising
\div Predictive Advising
Mistake Correcting

Multi-Agent Advisor Q-Learning. Subramanian, S., Taylor, K. Larson, & M. Crowley. JMLR-22

Sriram Ganapathi Subramanian

Kate Larson

"Multi-Agent Advisor Q-Learning." S. Ganapathi Subramanian, S., Taylor, K. Larson, & M. Crowley. 2022.

Mark Crowley

ADvising Multiple Intelligent Agents (ADMIRAL)

Improving MARL sample efficiency

- We introduce: Multi-agent action advising for MARL
 - General methods (no assumption on advisor or type of environment)
 - Two practical algorithms to learn from advisor
 - Principled method to evaluate the advisor
 - Theoretical guarantees of convergence

Human \rightarrow Agent

Reward signal?

"A Conceptual Framework for Externally-Influenced Agents: An Assisted Reinforcement Learning Review." Adam Bignold, Francisco Cruz, Taylor, Tim Brys, Richard Dazeley, Peter Vamplew, and Cameron Foale. 2021.

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

Demonstrations

Feedback

Preferences

Action Advice

Shaping Rewards

Thomaz & Breazeal 2006: Anticipator TAMER, Knox & Stone 2009

TAMER agent

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

Thomaz & Breazeal 2006: Anticipator TAMER, Knox & Stone 2009: Numeric, Return SABL, Loftin+ 2015

Feedback history h

Observation: "sit", Action:

Observation: "sit", Action:

. . .

Really make sense to assign numeric rewards to these?

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

, Feedback: "Bad Dog"

- , Feedback: "Good Boy"

Thomaz & Breazeal 2006: Anticipator TAMER, Knox & Stone 2009: Numeric, Return SABL, Loftin+ 2015: Categorical COACH, McGlashlin+ 2017

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

Click 'Go' to start today's training.

Feedback can be Relative

Feedback can be Relative

Improving Condition: Degrading Condition:

Advantage Function!

Thomaz & Breazeal 2006: Anticipator TAMER, Knox & Stone 2009: Numeric, Return SABL, Loftin+ 2015: Categorical COACH, McGlashlin+ 2017: Advantage Function

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

Human \rightarrow Agent

Reward signal?

"A Conceptual Framework for Externally-Influenced Agents: An Assisted Reinforcement Learning Review." Adam Bignold, Francisco Cruz, Taylor, Tim Brys, Richard Dazeley, Peter Vamplew, and Cameron Foale. 2021.

- Offline / Batch RL
- **Demonstrations**
- Curriculum Learning / Meta RL
- Advice

Demonstrations

Feedback

Preferences

Action Advice

Shaping Rewards

Human — Agent Bootstrapping

Lay person Subject Matter Expert Programmer

Leveraging Human Knowledge in Tabular Reinforcement Learning: A Study of Human Subjects. Ariel Rosenfeld, Matthew E. Taylor, and Sarit Kraus. IJCAI-17

- Offline / Batch RL
- Demonstrations
- Curriculum Learning / Meta RL
- Advice

Agent \rightarrow Human: ITS

Convey information Model user's understanding Model user's learning

 \rightarrow Sequential decision tasks

https://hassanmachmouchiblog.files.wordpress.com/20 21/01/robot-teachers.png

Agent \rightarrow Human: ITS

How to practice How to support When to support

Fig. 1: The Mouselab-MDP paradigm. (Left) Participants click to reveal the value at future states. (Right) ITS provides feedback on each planning operation. The question mark represents optional elaborated feedback.

C² Tutor: Helping People Learn to Avoid Present Bias During Decision Making. Calarina Muslimani, Saba Gul, Taylor, Carrie Demmans Epp, Christabel Wayllace. AIED-23.

Agent → Human: Pilot Training

Shortage of pilots Lots of knowledge Hands on training

Figure 1: System Architecture

Augmenting Flight Training with AI to Efficiently Train Pilots. Michael Guevarra, Srijita Das, Christabel Wayllace, Carrie Demmans Epp, Taylor, Alan Tay. AAAI-23 Demo.

Program Synthesis

Write better code faster

Program Optimization with Locally Improving search (POLIS) A system for improving programs w.r.t. reward

- Local search algorithm exploits program structure
- Generate effective & short programs

Can You Improve My Code? Optimizing Programs with Local Search. Fatemeh Abdollahi, Saqib Ameen, Levi Lelis, Taylor. IJCAI-23

```
1 def max_sum_slice(xs):
    max_ending = max_so_far = 0
   for x in xs:
       max_ending = max(0, max_ending + x)
       max_so_far = max(max_so_far, max_ending)
   return max_so_far
```

POLIS

polis, plural **poleis**, <u>ancient Greek city-state</u>.... There were several hundred poleis, the history and constitutions of most of which are known only sketchily most ancient Greek history is recounted in terms of the histories of <u>Athens</u>, <u>Sparta</u>, and a few others.

Original program

Average score ~ -75

POLIS


```
if o[3] > -0.038:
    action = 0
elif o[7] > 0.036:
    action = 2
elif o[5] < -0.1:
    action = 1
elif o[0] and o[6]:
    action = 2
elif o[5] > 0.959:
    action = 0
elif o[3] < -0.388:
    action = 2
elif o[4] > 0.1:
    action = 3
elif o[2] > 0.28:
    action = 1
else:
    action = 3
return action
```

POLIS improved program

Average score ~ +190

Bottom-Up Search (BUS)

Cost	# Programs	Ba
1	3	
2	3	
3	75	$\{\sqrt{\sqrt{x_1}},\sqrt{\sqrt{x_2}},\sqrt{\sqrt{x_3}},x_1$
4	147	$\{\sqrt{\sqrt{\sqrt{x_1}}},\cdots,\sqrt{x_1+x_1},\cdots,\sqrt{x_1-x_1}\}$
5	12K	
6	70K	
7		

$$cost$$

$$S \rightarrow \sqrt{S} \mid S + S \mid S - S \mid x_1 \mid x_2 \mid x_3$$
Bank
$$\frac{\{x_1, x_2, x_3\}}{\{\sqrt{x_1}, \sqrt{x_2}, \sqrt{x_3}\}}$$

$$(x_1 + x_1, \cdots, x_1 - x_1, x_1 - x_2, \cdots)$$

$$\overline{(1 - x_1}, \cdots, \sqrt{x_1} + x_1, \cdots, \sqrt{x_1} - x_1, \cdots)$$

$$\{\cdots\}$$

$$\{\cdots\}$$

$$\{\cdots\}$$

Guided BUS: Probe (Barke et. al. 2020)

Cost	# Programs]
2	3	
3	3	
4	3	
5	12	$\{\sqrt{\sqrt{\sqrt{x_1}}},\cdots,x_{n_n}\}$
6	48	$\{\sqrt{\sqrt{\sqrt{x_1}}},\cdots,\sqrt{x_1+x_2},$
7	93	
8	354	
9	3200	
10)	

COS

st
$$\left(\begin{array}{c} 1\\\sqrt{S}\\\sqrt{S}\\\end{array}\right) = \left(\begin{array}{c} 1\\\sqrt{S}\\\end{array}\right) = \left(\begin{array}{c} 1\\S+S\\\end{array}\right) = \left(\begin{array}{c} 2\\S-S\\\end{array}\right) = \left(\begin{array}{c} 2\\x_{1}\\x_{2}\\\end{array}\right) = \left(\begin{array}{c} 2\\x_{2}\\\end{array}\right) =$$

How does POLIS use BUS and Probe?

Improved program for line i of *p*

Experimental details

Improved program $p' \cong \operatorname{argmax} F(p)$

Score ~6.8

Score ~39

Computational results: POLIS results

Highway

Research Question 1: Can we teach people how to be better teachers?

(a) Lava World

(b) Door Key

Did users learn Importance Advising? -- Fixed Policy Experiment

Research Question 2: Can we adapt our algorithms to better learn from human teachers?

Figure out what human feedback means?

Research Question 2: Can we adapt our algorithms to better learn from human teachers?

Figure out what human feedback means?

Figure 2: The library of 16 environments is organized by the number of rooms and objects. There is a command list for each environment.

Peng et al., 2018

Research Question 3: Will Explainability Help?

 Explanations can help people select better agent and/or better anticipate agent's actions

Heatmap of Visits Per Coordinate

Davis-Pearson et al., under submission

Research Question 3: Will Explainability Help?

- Explanations can help people select better agent and/or better anticipate agent's actions
- Knowing what the agents knows should let teacher better target how they help → seems obvious...

Heatmap of Visits Per Coordinate

Davis-Pearson et al., under submission

Research Question 4: When is one type of help preferred?

- Teacher competence?
- Student capabilities?
- Speed of simulation?
- • •

Multi-agent, Multi-human Teaming

codment

The **first platform** to allow the design, training, and deployment of complex intelligence ecosystems, mixing humans and artificial agents of various kinds

It orchestrates heterogeneous ML & non-ML agents with real-time human interaction.

Human Input Parsing Platform for Openai Gym

In a web browser, human subjects can interact with Atari games, MuJuCo robots, etc.

- Give demonstrations
- Provide feedback
- Identify errors

Enable scaling up & out of HitL RL

- Built-in AWS support
- Integrate with MTurk

PO GYM hippogym.irll.ca

Conclusion: Many more questions!

We should cheat whenever possible

Lots of room for improvement

- Learning from agents/data
- Learning from humans
- Teaching humans

The Intelligent **Robot Learning** Laboratory

http://irll.ca http://cogment.ai/