Abstract: Many researchers have identified autonomous machine learning (unsupervised, semi-supervised and reinforcement learning) as an important cornerstone of advanced artificial intelligence. The Curious AI Company is developing such autonomous learning systems. We already have state-of-the-art results in several semi-supervised classification tasks but we are also working on bringing autonomy to learning segmentation and hierarchical control, both of them tasks that take a lot of human work when developing for instance self-driving cars. However, we believe there’s an even more important blocker on the way to advanced AI: the fundamental inability of currently used parallel distributed neural coding to properly represent objects and their interactions. We are working on deep learning networks whose neuro-symbolic representations will hopefully allow neural networks to understand the world not only in terms of a collection of features but in terms of objects and their interactions, too. This is necessary for many tasks such as communication, reasoning and complex decision making.
Speaker: Harri Valpola
Affiliation: CEO of the Curious AI Company
Place of Seminar: Aalto University